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Atom and group-transfer reactions mediated by transition metal Scheme 1
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protein active sites. First row transition metals that can accept and/ o CPh, . _EPh,
or release oxo and nitrene functionalities are particularly intereting. N il © 2:‘; < >
For the first row metals Fe, Co, Ni, and Cu, isolable complexes i i - MegP=Ntolyl)
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with a terminal imido and/or oxo functionality bonded to a single Phap” \ﬁ’;ﬂ’ Phyp” NEPhy MB(NCPh,)

metal center, ME or M=E (E = O, NR), are extremely rare. L P L P Pz
This apparent incompatibility of later metals (groups 9, 10, and I B
11) with multiply bonded, strong-donor ligands was overcome P

in the third row more than 10 years ago (e.g., C&#INR and o, Co_

Meslr=0).56 ocn—@— + Php” O\‘P,f,gz oo th"( \PPPhh,2
We recently prepared an anomalous low-spin cobalt(Il) complex, LB) 70°C, days ?) 4

[PhBR;]Col (1), exhibiting a distorted tetrahedral geometfThe o’ Ph

ground-state electronic configuration proposed TofFigure 1b)
presumably arises from a strong axial distortion, geometrically
enforced by the [PhB# ligand, coupled with its strong ligand-
field-donor strength. These factors suggested to us that it should,
in principle, be possible to replace the iodide ligand by a divalent,
stronglyzr-donating ligand. This would conceptually afford an 18-
electron, closed-shell configuration similar to that of cobaltocenium
(Figure 1c). We therefore sought to install a terminal imido
functionality on the “[PhBE]Co” unit and herein report a strategy
that proved viable.

) Figure 2. Displacement ellipsoid (50%) representations of (a) comg)ex
W e<::—"' and (b) complex6. Bond lengths (A) and angles (deg) fdr Co—N,
1.658(2); Ce-N—C46, 169.51(2); PtCo—N, 115.32(6); P2Co—N,
131.89(6); P3-Co—N, 125.64(6). For6: Co—N1, 1.667(2); NIN2,
1.280(2); N2-C27, 1.311(2); CoeN1—-N2, 163.08(2); C2#N2—N1,

.....

triplet doublet singlet 123.11 (2) .
IOH Io.z 'EL*S cobalt(l) complex [PhBRCo(PMe;) (3). Complex3 is bright green
g \\P'thz Phyp” \‘Prht;z Phop” \\%’;hhzz in the crystalline state; its magnetic and EPR data establish a triplet
kB) LB) LB) ground state, consistent with the qualitative splitting scheme
L@ 1® L« depicted in Figure la.
Figure 1. Qualitative splitting diagram assuming approximég or Cs Delivery of a nitrene (or imido) functionality to the cobalt(l)
symmetry for the frontier orbitals of (a) [PhBJEo—L; (b) Jahn-Teller center was accomplished readily by addition @tdlyl)azide to3
distorted low-spin [PhBRCo—X; (c) [PhBR]Co=E. The relative orbital in benzene solution at 2&. Steady effervescence of nitrogen was

energies are not accurately known. observed during the first several minutes of the reaction. This was

While several synthetic strategies were considered, the most@ccompanied by a solution color change from brown to deep red.
straightforward concerns a two-electron “NR” group-transfer reac- 1€ PMe consumes 1 equiv of added azide to formsMeN(p-
tion to a suitable cobalt(l) derivative. Accordingly, the key cobalt(l) toIY])- A high isolated yield (97%) therefore requires 2 equiv of
precursor was prepared in two steps (Scheme 1). The addition oféZide. The diamagnetic, crystalline red product, [P{BB=N-p-
PMe; to a green solution of in benzene resulted in the quantitative 1yl (4), proved amenable to an X-ray diffraction study. Its solid-
formation of red [PhBECo(l)(PMe;) (2). Complex2, which was state stru.cturé.,shown in Figure 2§, reveals a pseudo-tetrahedral
characterized as a low-spin (SQUID, EPR), approximately trigonal complex in which the six phenyl rings of the [PhgRlonor arms
bipyramidal (X-ray) complex, then underwent smooth reduction flank the terminal imido ligand of the cobalt center. The imido

by sodium amalgam in THF solution to afford the pseudotetrahedral igand is bent slightly (CeN—C46 = 169.51(2)), and the very
short Co-N bond distance of 1.658(2) A suggests strong multiple

* To whom correspondence should be addressed. E-mail: jpeters@caltech.edu.bond character in the CeN linkage. Complex can be heated for
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days in toluene solution at 10C with only modest decomposition.
Moreover, the parent ion (M- H = 850) can be observed by
electrospray MS. We also prepared'@N-labeled phenyl complex,
[PhBR]Co(**NPh) (a), and its nonlabeled derivativép, by an
analogous route. Difference IR spectra && and 5b revealed a
band associated with coupled modes of@te-NPh and the CH—
Phlinkages at 1340 crt. We have been unable to resolve thd
NMR signal for5a.

The solid-state structure df its thermal stability, and its modest
reactivity (vide infra) are consistent with formulating the -&¢
interaction as a strong triple bond. This is plausible in view of
simple symmetry considerations and isolobal conc¥ptspreli-
mary DFT study on the geometry-optimized electronic structure
of 4 corroborated this suggestion and provided an orbital splitting
diagram consistent with the qualitative frontier orbital diagram
sketched in Figure 1€ The DFT study suggested the orbital of
predominantly ¢ parentage actually lies lower in energy than the
xy andx? — y? orbitals of the filled lower set. Two empty orbitals
of xzandyzparentage, strongly destabilized by a pair of orthogonal
s-bonds from the imido ligand, lie at higher energy?

In a related reaction, we canvassed the abilityd &b intercept
a diphenylcarbene unit from ERBN,. Rather than undergoing
carbene transfer and concomitant expulsion gfiwe found that 2
equiv of PRCN, reacted with3 to generate the phosphazine
MesP(N,CPh) and the thermally stable diazoalkane adduct com-
plex, [PhBR]Co(N,CPh) (6). Terminal diazoalkane adducts of
group 9 metals are very raté2 the single cobalt diazoalkane
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resistant to nitrene transfer chemistry. We did find that the imido
functionality can be transferred to carbon monoxide to produce the
isocyanate (6C=N-p-tolyl), albeit sluggishly (14 equiv of CO,
70°C, 12 days)® The isolated cobalt(l) byproduct (90%) was the
diamagnetic dicarbonyl species [PhBBo(CO), (7) (»(CO) =
2008, 1932; KBr/THF).

133m/2). An additional product(s) was also observedBYNMR (~45%),
which presumably arises from thermal isocyanate degradation during the
course of the reaction.
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